4.6 Article

Light-driven transport of microparticles with phase-gradient metasurfaces

期刊

OPTICS LETTERS
卷 47, 期 24, 页码 6428-6431

出版社

Optica Publishing Group
DOI: 10.1364/OL.478179

关键词

-

类别

资金

  1. Knut och Alice Wallenbergs Stiftelse

向作者/读者索取更多资源

Researchers have proposed an ultra-thin silicon-based metasurface technology that enables simultaneous confinement and propulsion of microparticles, allowing for the trapping and transport of microscopic particles in a thin liquid cell. This technology is expected to play a significant role in areas such as miniaturized optical sensing, driving, and sorting.
Optical tweezers have opened numerous possibilities for precise control of microscopic particles for applications in life science and soft matter research and technology. However, traditional optical tweezers employ bulky conventional optics that prevents construction of compact optical manipulation systems. As an alternative, we present an ultra -thin silicon-based metasurface that enables simultaneous confinement and propulsion of microparticles based on a combination of intensity and phase-gradient optical forces. The metasurface is constructed as a water-immersion line -focusing element that enables trapping and transport of 2 mu m particles over a wide area within a thin liquid cell. We envisage that the type of multifunctional metasurfaces reported herein will play a central role in miniaturized optical sensing, driving, and sorting of microscopic objects, such as cells or other biological entities. (C) 2022 Optica Publishing Group

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据