4.6 Article

Three-dimensional micro displacement sensor based on fiber SPR mechanisms

期刊

OPTICS EXPRESS
卷 31, 期 4, 页码 6411-6425

出版社

Optica Publishing Group
DOI: 10.1364/OE.481514

关键词

-

类别

向作者/读者索取更多资源

In this paper, a 3D displacement sensor based on fiber SPR is proposed to measure micro displacement in X, Y and Z axes.
Three fiber micro displacement sensors can be combined to realize three-dimensional (3D) displacement sensing, but the system is complex. In this paper, a 3D displacement sensor based on fiber SPR was proposed, which was composed of displacement fiber and sensing fiber. By cascading the eccentric dual-core fiber and graded multimode fiber, the displacement fiber was realized. The V-groove was processed in the vertical and horizontal directions of the graded multimode fiber, and the inclined SPR sensing areas were fabricated to realize the sensing fiber. A straight beam from the middle core of the displacement fiber contacted the vertical V-groove inclined plane of the sensing fiber to realize the Y axis (up and down) direction micro displacement, contacted the horizontal V-groove inclined plane of the sensing fiber to realize the Z axis (front and back) direction micro displacement sensing. An oblique beam from the eccentric core of the displacement fiber cooperated with the sensing fiber to realize the micro displacement sensing in the X-axis (left and right) direction. The testing results indicate that the fiber SPR 3D micro displacement sensor can sense micro displacement in the X axis, Y axis and Z axis, and the wavelength sensitivity is 0.148 nm/mu m,-3.724 nm/mu m and 3.543 nm/mu m, respectively. The light intensity sensitivity is -0.0014a.u./mu m,-0.0458a.u./mu m and -0.0494a.u./mu m, respectively. When adjusting the parameters of eccentric dual-core fiber, the larger the core distance is, the greater the displacement sensitivity in the X-axis direction of the sensor is, and the smaller the detection range is. The proposed sensor can realize 3D micro displacement sensing by itself, which is expected to be used in the field of 3D micro displacement measurement and 3D space precision positioning.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据