4.7 Article

A bilayer color digital image correlation method for the measurement of the topography of a liquid interface

期刊

OPTICS AND LASERS IN ENGINEERING
卷 160, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.optlaseng.2022.107242

关键词

Topography measurement; Color speckle pattern; Digital image correlation; Virtual image; Virtual displacement field; Snell?s law

类别

向作者/读者索取更多资源

A bilayer color digital image correlation (BC-DIC) method is reported for measuring the topography of a liquid interface. The method uses the refraction of speckle patterns at the interface to perform 3D reconstruction through 2D measurement. It is shown to be feasible and accurate for measuring the topography of transparent objects, including liquid interfaces.
One of the most essential characteristics of the liquid interface is the topography dominated by hydrodynamics or capillary effects. Although there have developed 3D imaging techniques for the measurement of such topography, their setups, operations and reconstructions are relatively complex and suffer from low efficiency. Here we report a bilayer color digital image correlation (BC-DIC) method for the measurement of the topography of a liquid interface. The basic principle of the new method is the refraction of beneath bilayer color speckle patterns at the liquid interface, which makes it possible to perform 3D reconstruction through 2D measurement of the virtual displacement field of the speckle patterns. The equations for BC-DIC in different situations are deduced and discussed in detailed. Validation experiments are carried out to reconstruct the topography of triangular prism, planoconvex, complex transparent surface and sloshing water surface. The results show that BC-DIC is feasible and accurate for measuring the topography of transparent objects, including liquid interface. This new method paves the way for investigating surface and interface phenomena, such as capillarity and wetting issues, hydrodynamics on liquid interface, etc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据