4.5 Article

O2 Protonation Controls Threshold Behavior for N-Glycosidic Bond Cleavage of Protonated Cytosine Nucleosides

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 120, 期 21, 页码 4803-4811

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.6b04388

关键词

-

资金

  1. Chemical Measurement & Imaging Program within the Division of Chemistry of the National Science Foundation [CHE-1409420]
  2. Wayne State University
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [1409420] Funding Source: National Science Foundation

向作者/读者索取更多资源

IRMPD action spectroscopy studies of protonated 2'-deoxycytidine and cytidine, [dCyd+H](+) and [Cyd+H](+), have established that both N3 and O2 protonated conformers coexist in the gas phase. Threshold collision-induced dissociation (CID) of [dCyd+H](+) and [Cyd+H](+) is investigated here using guided ion beam tandem mass spectrometry techniques to elucidate the mechanisms and energetics for N-glycosidic bond cleavage. N-Glycosidic bond cleavage is observed as the major dissociation pathways resulting in competitive elimination of either protonated or neutral cytosine for both protonated cytosine nucleosides. Electronic structure calculations are performed to map the potential energy surfaces (PESs) for both N-glycosidic bond cleavage pathways observed. The molecular parameters derived from theoretical calculations are employed for thermochemical analysis of the energy-dependent CID data to determine the minimum energies required to cleave the N-glycosidic bond along each pathway. B3LYP and MP2(full) computed activation energies for N-glycosidic bond cleavage associated with elimination of protonated and neutral cytosine, respectively, are compared to measured values to evaluate the efficacy of these theoretical methods in describing the dissociation mechanisms and PESs for N-glycosidic bond cleavage. The 2'-hydroxyl of [Cyd+H](+) is found to enhance the stability of the N-glycosidic bond vs that of [dCyd+H](+). O2 protonation is found to control the threshold energies for N-glycosidic bond cleavage as loss of neutral cytosine from the O2 protonated conformers is found to require similar to 25 kJ/mol less energy than the N3 protonated analogues, and the activation energies and reaction enthalpies computed using B3LYP exhibit excellent agreement with the measured thresholds for the O2 protonated conformers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据