4.6 Review

Save your TIRs - more to auxin than meets the eye

期刊

NEW PHYTOLOGIST
卷 238, 期 3, 页码 971-976

出版社

WILEY
DOI: 10.1111/nph.18783

关键词

acid growth; auxin; gene expression control; nontranscriptional auxin effects; signal transduction

向作者/读者索取更多资源

Auxin is a crucial regulator in plant growth and development. The traditional canonical auxin-signalling pathway cannot explain all aspects of auxin biology, but recent studies have discovered non-canonical pathways which mediate rapid auxin responses.
Auxin has long been known as an important regulator of plant growth and development. Classical studies in auxin biology have uncovered a 'canonical' transcriptional auxin-signalling pathway involving the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors. TIR1/AFB perception of auxin triggers the degradation of repressors and the derepression of auxin-responsive genes. Nevertheless, the canonical pathway cannot account for all aspects of auxin biology, such as physiological responses that are too rapid for transcriptional regulation. This Tansley insight will explore several 'non-canonical' pathways that have been described in recent years mediating fast auxin responses. We focus on the interplay between a nontranscriptional branch of TIR1/AFB signalling and a TRANSMEMBRANE KINASE1 (TMK1)-mediated pathway in root acid growth. Other developmental aspects involving the TMKs and their association with the controversial AUXIN-BINDING PROTEIN 1 (ABP1) will be discussed. Finally, we provide an updated overview of the ETTIN (ETT)-mediated pathway in contexts outside of gynoecium development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据