4.6 Article

Witnessing non-Markovianity by quantum quasi-probability distributions

期刊

NEW JOURNAL OF PHYSICS
卷 24, 期 12, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/aca92b

关键词

open quantum systems; non-Markovian dynamics; quantum measurement; IC-POVM; frames; quasi-probability distributions; Kolmogorov distance

资金

  1. German Research Foundation (DFG) [FOR 5099]

向作者/读者索取更多资源

This article introduces a method of representing mixed quantum states using quasi-probability distributions and explains the influence of Kolmogorov distance between these distributions on the distinguishability of quantum states. A witness for non-Markovianity is also constructed and its performance is discussed in several examples.
We employ frames consisting of rank-one projectors (i.e. pure quantum states) and their induced informationally complete quantum measurements to represent generally mixed quantum states by quasi-probability distributions. In the case of discrete frames on finite dimensional systems this results in a vector like representation by quasi-probability vectors, while for the continuous frame of coherent states in continuous variable (CV) systems the approach directly leads to the celebrated representation by Glauber-Sudarshan P-functions and Husimi Q-functions. We explain that the Kolmogorov distances between these quasi-probability distributions lead to upper and lower bounds of the trace distance which measures the distinguishability of quantum states. We apply these results to the dynamics of open quantum systems and construct a non-Markovianity witness based on the Kolmogorov distance of the P- and Q-functions. By means of several examples we discuss the performance of this witness and demonstrate that it is useful in the regime of high entropy states for which a direct evaluation of the trace distance is typically very demanding. For Gaussian dynamics in CV systems we even find a suitable non-Markovianity measure based on the Kolmogorov distance between the P-functions which can alternatively be used as a witness for non-Gaussianity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据