4.6 Article

Highly stable Fe2O3@SnO2@HNCS hollow nanospheres with enhanced lithium-ion battery performance

期刊

NEW JOURNAL OF CHEMISTRY
卷 47, 期 6, 页码 3017-3025

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nj05799a

关键词

-

向作者/读者索取更多资源

Hollow Fe2O3@SnO2@HNCS nanospheres are synthesized and exhibit superior lithium storage performance, with a capacity retention of 44.7% after 500 cycles. Kinetic analysis shows that the electrode has an elevated capacitive controlled process and enhanced lithium diffusion coefficient. These findings highlight the potential of constructing nanomaterials with nanosized building blocks and rigid frameworks for high-performance lithium-ion battery anodes.
Iron-based nanomaterials are regarded as prospective candidates for lithium-ion battery anodes. However, their inferior cycling stability and volume variation restrict further application in many fields. Herein, hollow Fe2O3@SnO2@HNCS nanospheres are synthesized by calcination, followed by hydrothermal process. Electrochemical tests reveal that Fe2O3@SnO2@HNCS exhibits superior lithium storage performance. When the current density is 2 A g(-1), a discharge capacity of 375.3 mA h g(-1) is obtained after 500 cycles with capacity retention of 44.7%. Lithium storage kinetic analysis indicates that the Fe2O3@SnO2@HNCS electrode exhibits elevated capacitive controlled process and enhanced lithium diffusion coefficient. These results demonstrate that constructing nanomaterials comprising nanosized building blocks and rigid frameworks can create high performance lithium-ion battery anodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据