4.5 Article

Using EEG movement tagging to isolate brain responses coupled to biological movements

期刊

NEUROPSYCHOLOGIA
卷 177, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropsychologia.2022.108395

关键词

Biological motion perception; EEG; Frequency tagging; Local processing; Global processing

资金

  1. Research Foundation Flanders [12U0322N]
  2. Special Research Fund of Ghent University [BOF18/DOC/348]
  3. European Research Council Grant [THEMPO-758473]

向作者/读者索取更多资源

This study examines brain responses directly linked to observed movements during biological motion perception, showing that frequency tagging can distinguish between global and local processes. The results reveal how brain activity at different frequencies relates to visual processing of biological movements.
Detecting biological motion is essential for adaptive social behavior. Previous research has revealed the brain processes underlying this ability. However, brain activity during biological motion perception captures multitude of processes. As a result, it is often unclear which processes reflect movement processing and which processes reflect secondary processes that build on movement processing. To address this issue, we developed new approach to measure brain responses directly coupled to observed movements. Specifically, we showed 30 male and female adults a point-light walker moving at a pace of 2.4 Hz and used EEG frequency tagging measure the brain response coupled to that pace ('movement tagging'). The results revealed a reliable response the walking frequency that was reduced by two manipulations known to disrupt biological motion perception: phase scrambling and inversion. Interestingly, we also identified a brain response at half the walking frequency (i.e., 1.2 Hz), corresponding to the rate at which the individual dots completed a cycle. In contrast to the 2.4 response, the response at 1.2 Hz was increased for scrambled (vs. unscrambled) walkers. These results show that frequency tagging can be used to capture the visual processing of biological movements and can dissociate between global (2.4 Hz) and local (1.2 Hz) processes involved in biological motion perception, at different frequencies of the brain signal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据