4.8 Article

Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics

期刊

CELL
卷 162, 期 3, 页码 662-674

出版社

CELL PRESS
DOI: 10.1016/j.cell.2015.06.058

关键词

-

资金

  1. EUREKA NIDA [R01DA037152]
  2. NIMH [F31 MH101956]
  3. NIDA [K99DA038725]
  4. National Security Science and Engineering Faculty Fellowship of Energy
  5. US Department of Energy, Division of Materials Sciences [DE-FG02-07ER46471]
  6. NIH Common Fund NINDS [R01NS081707]
  7. Materials Research Laboratory and Center for Microanalysis of Materials [DE-FG02-07ER46453]

向作者/读者索取更多资源

In vivo pharmacology and optogenetics hold tremendous promise for dissection of neural circuits, cellular signaling, and manipulating neurophysiological systems in awake, behaving animals. Existing neural interface technologies, such as metal cannulas connected to external drug supplies for pharmacological infusions and tethered fiber optics for optogenetics, are not ideal for minimally invasive, un-tethered studies on freely behaving animals. Here, we introduce wireless optofluidic neural probes that combine ultrathin, soft microfluidic drug delivery with cellular-scale inorganic light-emitting diode (m-ILED) arrays. These probes are orders of magnitude smaller than cannulas and allow wireless, programmed spatiotemporal control of fluid delivery and photostimulation. We demonstrate these devices in freely moving animals to modify gene expression, deliver peptide ligands, and provide concurrent photostimulation with antagonist drug delivery to manipulate mesoaccumbens reward-related behavior. The minimally invasive operation of these probes forecasts utility in other organ systems and species, with potential for broad application in biomedical science, engineering, and medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据