4.8 Article

Tunable topologically driven Fermi arc van Hove singularities

期刊

NATURE PHYSICS
卷 -, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41567-022-01892-6

关键词

-

向作者/读者索取更多资源

The classification of electronic phases is based on two prominent paradigms: correlations and topology. Electron correlations lead to superconductivity and charge density waves, while the Berry phase gives rise to electronic topology. The combination of these two paradigms has prompted the search for electronic instabilities near the Fermi level of topological materials. This study identifies the electronic topology of chiral fermions as the driving force behind van Hove singularities that host electronic instabilities in the surface band structure.
The classification scheme of electronic phases uses two prominent paradigms: correlations and topology. Electron correlations give rise to superconductivity and charge density waves, while the quantum geometric Berry phase gives rise to electronic topology. The intersection of these two paradigms has initiated an effort to discover electronic instabilities at or near the Fermi level of topological materials. Here we identify the electronic topology of chiral fermions as the driving mechanism for creating van Hove singularities that host electronic instabilities in the surface band structure. We observe that the chiral fermion conductors RhSi and CoSi possess two types of helicoid arc van Hove singularities that we call type I and type II. In RhSi, the type I variety drives a switching of the connectivity of the helicoid arcs at different energies. In CoSi, we measure a type II intra-helicoid arc van Hove singularity near the Fermi level. Chemical engineering methods are able to tune the energy of these singularities. Finally, electronic susceptibility calculations allow us to visualize the dominant Fermi surface nesting vectors of the helicoid arc singularities, consistent with recent observations of surface charge density wave ordering in CoSi. This suggests a connection between helicoid arc singularities and surface charge density waves. Strong correlations between electrons in topological surface states drive the formation of surface van Hove singularities. These may be linked to charge density waves in the surface states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据