4.8 Review

Hierarchically structured bioinspired nanocomposites

期刊

NATURE MATERIALS
卷 22, 期 1, 页码 18-35

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41563-022-01384-1

关键词

-

向作者/读者索取更多资源

This Review discusses recent advancements in bioinspired nanocomposite design, focusing on the role of hierarchical structuring at different length scales in creating multifunctional, lightweight, and robust structural materials. By manipulating the architecture, interphases, and confinement, dynamic and synergistic responses have been achieved. The study highlights the significance of hierarchical structures across multiple length scales for achieving multifunctionality and robustness.
This Review discusses recent progress in bioinspired nanocomposite design, emphasizing the role of hierarchical structuring at distinct length scales to create multifunctional, lightweight and robust structural materials for diverse technological applications. Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据