4.6 Article

Unidirectional Rashba spin splitting in single layer WS2(1-x)Se2x alloy

期刊

NANOTECHNOLOGY
卷 34, 期 7, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6528/aca0f6

关键词

2D materials; electronic band structure; WS2(1-x)Se2x alloy

向作者/读者索取更多资源

By characterizing the electronic properties of a single layer WS1.4Se0.6 alloy, researchers have discovered its unique anisotropic properties. The alloy exhibits a giant unidirectional Rashba spin splitting and in-plane polarization, which could have wide-ranging applications in future electronic, piezoelectric, and spintronic devices.
Atomically thin two-dimensional (2D) layered semiconductors such as transition metal dichalcogenides have attracted considerable attention due to their tunable band gap, intriguing spin-valley physics, piezoelectric effects and potential device applications. Here we study the electronic properties of a single layer WS1.4Se0.6 alloys. The electronic structure of this alloy, explored using angle resolved photoemission spectroscopy, shows a clear valence band structure anisotropy characterized by two paraboloids shifted in one direction of the k-space by a constant in-plane vector. This band splitting is a signature of a unidirectional Rashba spin splitting with a related giant Rashba parameter of 2.8 +/- 0.7 eV angstrom. The combination of angle resolved photoemission spectroscopy with piezo force microscopy highlights the link between this giant unidirectional Rashba spin splitting and an in-plane polarization present in the alloy. These peculiar anisotropic properties of the WS1.4Se0.6 alloy can be related to local atomic orders induced during the growth process due the different size and electronegativity between S and Se atoms. This distorted crystal structure combined to the observed macroscopic tensile strain, as evidenced by photoluminescence, displays electric dipoles with a strong in-plane component, as shown by piezoelectric microscopy. The interplay between semiconducting properties, in-plane spontaneous polarization and giant out-of-plane Rashba spin-splitting in this 2D material has potential for a wide range of applications in next-generation electronics, piezotronics and spintronics devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据