4.8 Article

Highly efficient silica coated perovskite nanocrystals with the assistance of ionic liquids for warm white LEDs

期刊

NANOSCALE
卷 15, 期 2, 页码 631-643

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nr05118d

关键词

-

向作者/读者索取更多资源

In order to address the issue of poor structural stability of lead halide perovskite nanocrystals (NCs), a novel strategy for synthesizing stable CsPbBr3@SiO2 NCs is designed. The method utilizes the hydrolytic polycondensation of (3-aminopropyl)triethoxysilane (APTES) in the presence of ionic liquids (ILs). This approach effectively resolves the problems of fluorescence quenching and undesirable agglomeration, resulting in CsPbBr3@SiO2 NCs with high photoluminescence quantum yield and excellent stability.
Given the inherent characteristics of defect-tolerant, tunable emission performance, and high extinction coefficient, lead halide perovskite nanocrystals (NCs) have attracted widespread attention as a promising material in optoelectronic fields. However, their poor structural stability greatly impedes their practical applications. Herein, a novel strategy for synthesizing stable CsPbBr3@SiO2 NCs via the hydrolytic polycondensation of (3-aminopropyl)triethoxysilane (APTES) in the presence of ionic liquids (ILs) is deliberately designed. The problems of fluorescence quenching and undesirable agglomeration of NCs resulting from ligand loss and surface erosion existing in common encapsulation methods can be effectively resolved. The fast and controllable growth of the SiO2 shell around the CsPbBr3 NCs is realized owing to the high polarity and hygroscopicity of the IL. Moreover, the dual effects of the IL for passivating the surface defects and avoiding the structural degradation of NCs during the hydrolysis process of APTES are demonstrated. As a result, CsPbBr3@SiO2 NCs with a high photoluminescence quantum yield of 85.7% and excellent stability are realized. Furthermore, this method proves to be a versatile tool to obtain CsPbX3@SiO2 NCs with different halide compositions, realizing a broad tunable wavelength from 421.2 nm to 651.6 nm. A warm white LED with a high color rending index was assembled through packaging CsPbBr3@SiO2 NCs and Cu-In-Zn-S/ZnS/PVP composites on a commercial blue chip. These findings are expected to facilitate the development of perovskite NCs, which provides access to their optoelectronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据