4.8 Article

Rhodium metallene-supported platinum nanocrystals for ethylene glycol oxidation reaction

期刊

NANOSCALE
卷 15, 期 4, 页码 1947-1952

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nr06138d

关键词

-

向作者/读者索取更多资源

A Rh metallene-supported Pt nanoparticle electrocatalyst with ultra-small Pt nanoparticles uniformly attached to the Rh surface was successfully synthesized. Pt/Rhlene exhibited a 3.60-fold Pt-mass activity enhancement for the ethylene glycol oxidation reaction compared with commercial Pt black, and maintained high stability and excellent poisoning-tolerance during electrocatalysis, thanks to the specific physical/chemical properties of Rhlene. The superior electrocatalytic performance of Pt/Rhlene may pave the way for synthesizing other metallene-supported noble metal nanoparticle hybrids for various electrocatalytic applications.
Low-temperature fuel cells have great application potential in electric vehicles and portable electronic devices, which need advanced electrocatalysts. Controlling the composition and morphology of electrocatalysts can effectively improve their catalytic performance. In this work, a Rh metallene (Rhlene)-supported Pt nanoparticle (Pt/Rhlene) electrocatalyst is successfully synthesized by a simple chemical reduction method, in which ultra-small Pt nanoparticles are uniformly attached to the Rhlene surface due to the high surface area of Rhlene. Pt/Rhlene reveals a 3.60-fold Pt-mass activity enhancement for the ethylene glycol oxidation reaction in alkaline solution compared with commercial Pt black, and maintains high stability and excellent poisoning-tolerance during electrocatalysis, owing to the specific physical/chemical properties of Rhlene. The superior electrocatalytic performance of Pt/Rhlene may open an avenue to synthesize other metallene-supported noble metal nanoparticle hybrids for various electrocatalytic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据