4.8 Article

Electrospun Fe0.64Ni0.36/AIXene/CNEs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers

期刊

NANO RESEARCH
卷 16, 期 2, 页码 3395-3407

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-022-5368-1

关键词

MXene; Fe0.64Ni0 36; nanofibers; electromagnetic wave absorption; electrospinning

向作者/读者索取更多资源

This study presents a novel composite preparation strategy to design dendritic nanofibers based on MXene nanosheets as the dendritic matrix and embedded magnetic nanoparticles. The multidimensional nanocomposites exhibit excellent conduction loss, magnetic loss, and polarization loss capabilities, and the impedance matching and loss mechanisms are improved through optimizing the structure and components. The nanocomposites show outstanding electromagnetic wave absorption performance with a wide effective absorption bandwidth.
Two-dimensional metal carbide or nitride materials (MXenes) are widely used in electromagnetic wave absorption because of their unique structure. Herein, a novel composite preparation strategy has been proposed to design dendritic nanofibers based on the electrostatic spinning methods. The multifunctional MXene nanosheets are used as the dendritic matrix, and magnetic nanoparticles are embedded in the nanosheets as magnetic loss units. Multidimensional nanocomposites have interlaced carbon fiber networks, large-scale magnetically coupled networks, and a lot of multi-heterojunction interface structures, which endow the composites with extraordinary conduction loss, magnetic loss, and polarization loss capabilities, respectively. The impedance matching and loss mechanisms of the composites are improved by optimizing the synergistic relationship between the components and building a suitable structure. The optimum reflection loss (RL) of -54.1 dB is achieved at 2.7 mm and a wide effective absorption bandwidth (EAB, RL below -10 dB) of 7.76 GHz is obtained at a small thickness of 2.1 mm for the nanocomposites. The distinctive microstructures of the nanofibrous membranes give rise to their flexibility, waterproof, and electromagnetic wave absorption performance and endow the nanofibrous membranes potential to be utilized as lightweight, efficient electromagnetic wave protective fabric in harsh environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据