4.8 Article

Colossal structural distortion and interlayer-coupling suppression in a van der Waals crystal induced by atomic vacancies

期刊

NANO RESEARCH
卷 16, 期 4, 页码 5715-5720

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-022-5203-8

关键词

atomic vacancies; structural distortion; interlayer coupling; scanning; tunneling microscopy

向作者/读者索取更多资源

This study reports the influence of defects in vdW crystals on the local atomic configurations and interlayer coupling. The findings show that Se vacancies in few-layer NbSe2 can cause atomic distortions and generate in-gap states in single-layer NbSe2. Moreover, these vacancies lead to a significant suppression of interlayer coupling in the bilayer system.
The interlayer coupling in van der Waals (vdW) crystals has substantial effects on the performance of materials. However, an indepth understanding of the microscopic mechanism on the defect-modulated interlayer coupling is often elusive, owing partly to the challenge of atomic-scale characterization. Here we report the native Se-vacancies in a charge-density-wave metal 2H-NbSe2, as well as their influence on the local atomic configurations and interlayer coupling. Our low-temperature scanning tunneling microscopy (STM) measurements, complemented by density functional theory calculations, indicate that the Se-vacancies in few-layer NbSe2 can generate obvious atomic distortions due to the Jahn-Teller effect, thus breaking the rotational symmetry on the nanoscale. Moreover, these vacancies can locally generate an in-gap state in single-layer NbSe2, and more importantly, lead to a colossal suppression of interlayer coupling in the bilayer system. Our results provide clear structural and electronic fingerprints around the vacancies in vdW crystals, paving the way for developing functional vdW devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据