4.7 Article

Evidence for an abundant old population of Galactic ultra-long period magnetars and implications for fast radio bursts

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stad208

关键词

stars; magnetars - white dwarfs - radio continuum; transients - fast radio bursts

向作者/读者索取更多资源

Two recent discoveries, namely PSR J0901-4046 and GLEAM-X J162759.5-523504.3, have confirmed the existence of radio-loud periodic sources with long periods. These sources cannot be explained by rotation losses, and GLEAM-X J1627 is considered to be a highly magnetized object consistent with a magnetar. The presence of these objects suggests a widespread survival of magnetar-like fields and they may also be a second class of FRB progenitors.
Two recent discoveries, namely PSR J0901-4046 and GLEAM-X J162759.5-523504.3 (hereafter GLEAM-X J1627), have corroborated an extant population of radio-loud periodic sources with long periods (76 and 1091 s, respectively) whose emission can hardly be explained by rotation losses. We argue that GLEAM-X J1627 is a highly magnetized object consistent with a magnetar (an ultra-long period magnetar, ULPM), and demonstrate it is unlikely to be either a magnetically or a rotationally powered white dwarf. By studying these sources together with previously detected objects, we find there are at least a handful of promising candidates for Galactic ULPMs. The detections of these objects imply a substantial number, N & GSIM; 13 000 and N & GSIM; 500 for PSR J0901-4046 like and GLEAM-X J1627 like objects, respectively, within our Galaxy. These source densities, as well as cooling age limits from non-detection of thermal X-rays, Galactic offsets, timing stability and dipole spin-down limits, all imply the ULPM candidates are substantially older than confirmed Galactic magnetars and that their formation channel is a common one. Their existence implies widespread survival of magnetar-like fields for several Myr, distinct from the inferred behaviour in confirmed Galactic magnetars. ULPMs may also constitute a second class of FRB progenitors which could naturally exhibit very long periodic activity windows. Finally, we show that existing radio campaigns are biased against detecting objects like these and discuss strategies for future radio and X-ray surveys to identify more such objects. We estimate that empty set (100) more such objects should be detected with SKA-MID and DSA-2000.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据