4.6 Review

A Review for In Vitro and In Vivo Detection and Imaging of Gaseous Signal Molecule Carbon Monoxide by Fluorescent Probes

期刊

MOLECULES
卷 27, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/molecules27248842

关键词

Carbon monoxide; fluorescent probe; response mechanism; gaseous transmitter molecule

资金

  1. Natural Science Foundation of China (NSFC) [21605046]
  2. Hunan Provincial Natural Science Foundation of China [2017JJ3060]

向作者/读者索取更多资源

This review summarizes the research progress of CO fluorescent probes in recent years, including their design concept, detection mechanism, and biological applications. The relationship between the structure and performance of the probes is also discussed.
Carbon monoxide (CO) is a vital endogenous gaseous transmitter molecule involved in the regulation of various physiological and pathological processes in living biosystems. In order to investigate the biological function of CO, many technologies have been developed to monitor the level of endogenous CO in biosystems. Among them, the fluorescence detection technology based on the fluorescent probe has the advantages of high sensitivity, excellent selectivity, simple operation, especially non-invasive damage to biological samples, and the possibility of real-time in situ detection, etc., which is considered to be one of the most effective and applicable detection techniques. Therefore, in the last few years, a lot of work has been carried out on the design, synthesis and in vivo fluorescence imaging studies of CO fluorescent probes. Furthermore, using fluorescent probes to detect the changes in CO concentrations in living cells and tissues as well as in organisms has been one of the hot research topics in recent years. However, it is still a challenge to rationally design CO fluorescent probe with excellent optical performance, structural stability, low background interference, good biocompatibility, and excellent water solubility. Therefore, this review focuses on the research progress of CO fluorescent probes in the detection mechanism and biological applications in recent years. However, this popular and leading topic has rarely been summarized comprehensively to date. Thus, the research progress of CO fluorescent probes in recent years is reviewed in terms of their design concept, detection mechanism, and their biological applications. In addition, the relationship between the structure and performance of the probes was also discussed. More significantly, we hope that more excellent optical properties fluorescent probes for gaseous transmitter molecule CO detection and imaging will overcome the current problems of high biotoxicity and limited water solubility in future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据