4.6 Article

Gaseous- and Condensed-Phase Activities of Some Reactive P- and N-Containing Fire Retardants in Polystyrenes

期刊

MOLECULES
卷 28, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/molecules28010278

关键词

polystyrene; thermal decomposition; reactive modification; P- and N-containing fire retardants; mode of action of fire retardance; gaseous-phase inhibition; char formation

向作者/读者索取更多资源

The condensed-phase and gaseous-phase activities of fire-retardant moieties in modified styrene polymers were evaluated for the first time. The thermal decomposition of the modified polymers produced volatile products such as benzaldehyde, acetophenone, and styrene. Reactive modification of polystyrene with phosphorus and nitrogen monomers resulted in a predominantly condensed-phase mode of action.
Polystyrene (PS) was modified by covalently binding P-, P-N- and/or N- containing fire-retardant moieties through co- or ter-polymerization reactions of styrene with diethyl(acryloyloxymethyl)phosphonate (DEAMP), diethyl-p-vinylbenzyl phosphonate (DEpVBP), acrylic acid-2-[(diethoxyphosphoryl)methylamino]ethyl ester (ADEPMAE) and maleimide (MI). In the present study, the condensed-phase and the gaseous-phase activities of the abovementioned fire retardants within the prepared co- and ter-polymers were evaluated for the first time. Pyrolysis-Gas Chromatography/Mass Spectrometry was employed to identify the volatile products formed during the thermal decomposition of the modified polymers. Benzaldehyde, alpha-methylstyrene, acetophenone, triethyl phosphate and styrene (monomer, dimer and trimer) were detected in the gaseous phase following the thermal cracking of fire-retardant groups and through main chain scissions. In the case of PS modified with ADEPMAE, the evolution of pyrolysis gases was suppressed by possible inhibitory actions of triethyl phosphate in the gaseous phase. The reactive modification of PS by simultaneously incorporating P- (DEAMP or DEpVBP) and N- (MI) monomeric units, in the chains of ter-polymers, resulted in a predominantly condensed-phase mode of action owing to synergistic P and N interactions. The solid-state P-31 NMR spectroscopy, Scanning Electron Microscopy/Energy Dispersive Spectroscopy, Inductively-Coupled Plasma/Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy of char residues, obtained from ter-polymers, confirmed the retention of the phosphorus species in their structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据