4.6 Review

The Multifaceted MEP Pathway: Towards New Therapeutic Perspectives

期刊

MOLECULES
卷 28, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/molecules28031403

关键词

antibacterial drug; immunostimulant; isoprenoids; laurencione; MEP pathway; phosphoantigen; prodrug; quorum sensing

向作者/读者索取更多资源

Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs.
Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human V gamma 9V delta 2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-D-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据