4.6 Article

Polypyrrole-Coated Low-Crystallinity Iron Oxide Grown on Carbon Cloth Enabling Enhanced Electrochemical Supercapacitor Performance

期刊

MOLECULES
卷 28, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/molecules28010434

关键词

supercapacitors; anode; low-crystallinity Fe2O3; polypyrrole; aqueous electrolyte

向作者/读者索取更多资源

A polypyrrole-coated low-crystallinity Fe2O3 supported on carbon cloth (D-Fe2O3@PPy/CC) was prepared by chemical reduction and electrodeposition methods. The low-crystallinity Fe2O3 nanorod achieved using a NaBH4 treatment offered more active sites and enhanced the Faradaic reaction. The construction of a PPy layer gave more charge storage and increased the stability of the electrode.
It is highly attractive to design pseudocapacitive metal oxides as anodes for supercapacitors (SCs). However, as they have poor conductivity and lack active sites, they generally exhibit an unsatisfied capacitance under high current density. Herein, polypyrrole-coated low-crystallinity Fe2O3 supported on carbon cloth (D-Fe2O3@PPy/CC) was prepared by chemical reduction and electrodeposition methods. The low-crystallinity Fe2O3 nanorod achieved using a NaBH4 treatment offered more active sites and enhanced the Faradaic reaction in surface or near-surface regions. The construction of a PPy layer gave more charge storage at the Fe2O3/PPy interface, favoring the limitation of the volume effect derived from Na+ transfer in the bulk phase. Consequently, D-Fe2O3@PPy/CC displayed enhanced capacitance and stability. In 1 M Na2SO4, it showed a specific capacitance of 615 mF cm(-2) (640 F g(-1)) at 1 mA cm(-2) and still retained 79.3% of its initial capacitance at 10 mA cm(-2) after 5000 cycles. The design of low-crystallinity metal oxides and polymer nanocomposites is expected to be widely applicable for the development of state-of-the-art electrodes, thus opening new avenues for energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据