4.7 Article

Characterizing nutritional phenotypes using experimental nutrigenomics: Is there nutrient-specificity to different types of dietary stress?

期刊

MOLECULAR ECOLOGY
卷 32, 期 5, 页码 1073-1086

出版社

WILEY
DOI: 10.1111/mec.16825

关键词

biomarkers; ecological stoichiometry; food quality; gene expression; nutritional profiling

向作者/读者索取更多资源

In this study, nutrigenomics was used to identify nutritional biomarkers in Daphnia pulex. Transcriptome sequencing identified 13 potential biomarkers that accurately predicted the nutritional status of the zooplankter. These biomarkers were able to classify samples into the correct nutritional group with 100% accuracy. The findings provide insights into the causes and consequences of nutritional limitation in animal consumers and their responses to changes in biogeochemical cycles.
The ability to directly measure and monitor poor nutrition in individual animals and ecological communities is hampered by methodological limitations. In this study, we use nutrigenomics to identify nutritional biomarkers in a freshwater zooplankter, Daphnia pulex, a ubiquitous primary consumer in lakes and a sentinel of environmental change. We grew animals in six ecologically relevant nutritional treatments: nutrient replete, low carbon (food), low phosphorus, low nitrogen, low calcium and high Cyanobacteria. We extracted RNA for transcriptome sequencing to identify genes that were nutrient responsive and capable of predicting nutritional status with a high degree of accuracy. We selected a list of 125 candidate genes, which were subsequently pruned to 13 predictive potential biomarkers. Using a nearest-neighbour classification algorithm, we demonstrate that these potential biomarkers are capable of classifying our samples into the correct nutritional group with 100% accuracy. The functional annotation of the selected biomarkers revealed some specific nutritional pathways and supported our hypothesis that animal responses to poor nutrition are nutrient specific and not simply different presentations of slow growth or energy limitation. This is a key step in uncovering the causes and consequences of nutritional limitation in animal consumers and their responses to small- and large-scale changes in biogeochemical cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据