4.8 Article

Jewel Beetle Opsin Duplication and Divergence Is the Mechanism for Diverse Spectral Sensitivities

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 40, 期 2, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msad023

关键词

Buprestidae; Drosophila; Coleoptera; Spectral tuning; Visual pigment; Insect vision

向作者/读者索取更多资源

The evolutionary history of visual genes in beetles is different from other well-studied insect orders. Beetles have lost the commonly conserved short-wavelength (SW) insect opsin gene, but have duplicated the ancestral ultraviolet (UV) and long-wavelength (LW) opsins to expand spectral sensitivity. The jewel beetles, a diverse and colorful family of beetles, have complex spectral sensitivity and use color cues for mate and host detection. This study is the first to test opsin spectral tuning mechanisms in beetles.
The evolutionary history of visual genes in Coleoptera differs from other well-studied insect orders, such as Lepidoptera and Diptera, as beetles have lost the widely conserved short-wavelength (SW) insect opsin gene that typically underpins sensitivity to blue light (similar to 440 nm). Duplications of the ancestral ultraviolet (UV) and long-wavelength (LW) opsins have occurred in many beetle lineages and have been proposed as an evolutionary route for expanded spectral sensitivity. The jewel beetles (Buprestidae) are a highly ecologically diverse and colorful family of beetles that use color cues for mate and host detection. In addition, there is evidence that buprestids have complex spectral sensitivity with up to five photoreceptor classes. Previous work suggested that opsin duplication and subfunctionalization of the two ancestral buprestid opsins, UV and LW, has expanded sensitivity to different regions of the light spectrum, but this has not yet been tested. We show that both duplications are likely unique to Buprestidae or the wider superfamily of Buprestoidea. To directly test photopigment sensitivity, we expressed buprestid opsins from two Chrysochroa species in Drosophila melanogaster and functionally characterized each photopigment type as UV- (356-357 nm), blue- (431-442 nm), green- (507-509 nm), and orange-sensitive (572-584 nm). As these novel opsin duplicates result in significantly shifted spectral sensitivities from the ancestral copies, we explored spectral tuning at four candidate sites using site-directed mutagenesis. This is the first study to directly test opsin spectral tuning mechanisms in the diverse and specious beetles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据