4.6 Review

Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotobiol.2016.02.032

关键词

Doxorubicin; DNA; tRNA; Intercalation; Groove binding; Conformation; Modeling

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

In this review, we have compared the results of multiple spectroscopic studies and molecular modeling of anticancer drug doxorubicin (DOX) bindings to DNA and tRNA. DOX was intercalated into DNA duplex, while tRNA binding is via major and minor grooves. DOX-DNA intercalation is close to A-7, C-5, 'C-19 (H-bonding with DOX NH2 group), G-6, T-8 and T-18 with the free binding energy of -4.99 kcal/mol. DOX-tRNA groove bindings are near A-29, A-31, A-38, C-25, C-27, C-28, *G-30 (H-bonding) and U-41 with the free binding energy of -4.44 kcal/mol. Drug intercalation induced a partial B to A-DNA transition, while tRNA remained in A-family structure. The structural differences observed between DOX bindings to DNA and tRNA can be the main reasons for drug antitumor activity. The results of in vitro MTT assay on SKC01 colon carcinoma are consistent with the observed DNA structural changes. Future research should be focused on finding suitable nanocarriers for delivery of DOX in vivo in order to exploit the full capacity of this very important anticancer drug. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据