4.7 Article

Constitutive glucose dehydrogenase elevates intracellular NADPH levels and luciferase luminescence in Bacillus subtilis

期刊

MICROBIAL CELL FACTORIES
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12934-022-01993-0

关键词

Bacillus subtilis; Inositol; NADPH; Luciferase

资金

  1. JSPS
  2. [18H02128]

向作者/读者索取更多资源

In this study, artificial manipulation of NADPH regeneration in Bacillus subtilis was found to enhance the conversion of myo-inositol. Luciferase was also identified as a potential indicator of intracellular NADPH levels.
Background: Genetic modifications in Bacillus subtilis have allowed the conversion of myo-inositol into scyllo-inositol, which is proposed as a therapeutic agent for Alzheimer's disease. This conversion comprises two reactions catalyzed by two distinct inositol dehydrogenases, IolG and IolW. The IolW-mediated reaction requires the intracellular regeneration of NADPH, and there appears to be a limit to the endogenous supply of NADPH, which may be one of the rate-determining factors for the conversion of inositol. The primary mechanism of NADPH regeneration in this bacterium remains unclear. Results: The gdh gene of B. subtilis encodes a sporulation-specific glucose dehydrogenase that can use NADP(+) as a cofactor. When gdh was modified to be constitutively expressed, the intracellular NADPH level was elevated, increasing the conversion of inositol. In addition, the bacterial luciferase derived from Photorhabdus luminescens became more luminescent in cells in liquid culture and colonies on culture plates. Conclusion: The results indicated that the luminescence of luciferase was representative of intracellular NADPH levels. Luciferase can therefore be employed to screen for mutations in genes involved in NADPH regeneration in B. subtilis, and artificial manipulation to enhance NADPH regeneration can promote the production of substances such as scyllo-inositol.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据