4.7 Article

Machine learning and materials informatics approaches for predicting transverse mechanical properties of unidirectional CFRP composites with microvoids

期刊

MATERIALS & DESIGN
卷 224, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2022.111340

关键词

Unidirectional composites; Voids; Micromechanics; Two-point statistics; Machine learning

资金

  1. Fundamental Research Funds for the Zhejiang Provincial Universities [2021XZZX007]
  2. Zhejiang Provincial Natural Science Foundation of China [LQ22E020004]

向作者/读者索取更多资源

This study develops a machine learning-assisted model to predict the transverse mechanical properties of UD-CFRP composites with microvoids, providing a promising tool for accelerating the smart design and optimization of composites.
The mechanical properties of composites are traditionally measured using numerical and experimental approaches, which impede the innovation of materials due to the cost, time, or effort involved. This study for the first time develops a machine learning-assisted model, which aims at predicting the transverse mechanical properties of unidirectional (UD) carbon fiber reinforced polymer (CFRP) composites with microvoids. To this end, the stochastic microstructures are generated by random sequential expansion (RSE) and hard-core model. And the transverse elastic modulus, transverse tensile strength and transverse compressive strength are computed by micromechanics-based finite element (FE) method. Then, the reduced order representation of microstructures is determined using 2-point spatial correlations and principal component analysis (PCA). Finally, a genetic algorithm (GA) optimized back propagation (BP) neural network is implemented to capture the potential nonlinear relationship between microstructure and transverse mechanical properties. The presented data-driven techniques can reproduce the FE simulation results with an R-value of 0.89 or greater. The excellent agreement between the predicted results and test datasets verifies the successful application of data science methodologies in elucidating the microstructure-property linkages of UD-CFRP composites with microvoids, and thus provides a promising tool for accelerating the smart design and optimization of composites. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据