4.7 Review

Recent microfluidic advances in submicron to nanoparticle manipulation and separation

期刊

LAB ON A CHIP
卷 23, 期 5, 页码 982-1010

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2lc00793b

关键词

-

向作者/读者索取更多资源

This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation and separation. It summarizes the principles of traditional techniques and explores the physics, device design, working mechanism, and applications of different microfluidic approaches. The merits and demerits of microfluidic techniques are compared to conventional technologies. Seven standard post-separation detection techniques for nanoparticles are summarized, and current challenges and future perspectives on microfluidic technology for nanoparticle manipulation are discussed.
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据