4.7 Article

Monocytes educated by cancer-associated fibroblasts secrete exosomal miR-181a to activate AKT signaling in breast cancer cells

期刊

JOURNAL OF TRANSLATIONAL MEDICINE
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12967-022-03780-2

关键词

Breast cancer; Cancer-associated fibroblasts; Tumor-associated macrophages; Immunosuppressive tumor microenvironment; Exosomes; AKT signaling

资金

  1. Tarbiat Modares University

向作者/读者索取更多资源

This study investigated the role of cancer-associated fibroblasts (CAFs) in promoting breast cancer (BC) cell progression. The researchers found that CAFs recruited monocytes and induced the formation of pro-tumoral macrophages. Moreover, CAFs were also able to differentiate human monocytes into anti-inflammatory macrophages and increase reactive oxygen species (ROS) generation, which is required for proper macrophage polarization. Importantly, CAF-educated monocytes and their exosomes suppressed T-cell proliferation and promoted BC cell proliferation and migration. In addition, the authors observed an up-regulation of miR-181a in BC, which was positively correlated with tumor aggressiveness. They further demonstrated that miR-181a transfer from CAF-educated monocytes to BC cells through exosomes activated the AKT signaling pathway. These findings highlight the important role of CAFs in tumor progression and provide a potential therapeutic target for BC.
BackgroundCancer-associated fibroblasts (CAFs), one of the major components of the tumor stroma, contribute to an immunosuppressive tumor microenvironment (TME) through the induction and functional polarization of protumoral macrophages. We have herein investigated the contribution of CAFs to monocyte recruitment and macrophage polarization. We also sought to identify a possible paracrine mechanism by which CAF-educated monocytes affect breast cancer (BC) cell progression. MethodsMonocytes were educated by primary CAFs and normal fibroblast (NF); the phenotypic alterations of CAF- or NF-educated monocytes were measured by flow cytometry. Exosomes isolated from the cultured conditioned media of the educated monocytes were characterized. An in vivo experiment using a subcutaneous transplantation tumor model in athymic nude mice was conducted to uncover the effect of exosomes derived from CAF- or NF-educated monocytes on breast tumor growth. Gain- and loss-of-function experiments were performed to explore the role of miR-181a in BC progression with the involvement of the AKT signaling pathway. Western blotting, enzyme-linked immunosorbent assay, RT-qPCR, flow cytometry staining, migration assay, immunohistochemical staining, and bioinformatics analysis were performed to reveal the underlying mechanisms. ResultsWe illustrated that primary CAFs recruited monocytes and established pro-tumoral M2 macrophages. CAF may also differentiate human monocyte THP-1 cells into anti-inflammatory M2 macrophages. Besides, we revealed that CAFs increased reactive oxygen species (ROS) generation in THP-1 monocytes, as differentiating into M2 macrophages requires a level of ROS for proper polarization. Importantly, T-cell proliferation was suppressed by CAF-educated monocytes and their exosomes, resulting in an immunosuppressive TME. Interestingly, CAF-activated, polarized monocytes lost their tumoricidal abilities, and their derived exosomes promoted BC cell proliferation and migration. In turn, CAF-educated monocyte exosomes exhibited a significant promoting effect on BC tumorigenicity in vivo. Of clinical significance, we observed that up-regulation of circulating miR-181a in BC was positively correlated with tumor aggressiveness and found a high level of this miRNA in CAF-educated monocytes and their exosomes. We further clarified that the pro-oncogenic effect of CAF-educated monocytes may depend in part on the exosomal transfer of miR-181a through modulating the PTEN/Akt signaling axis in BC cells. ConclusionsOur findings established a connection between tumor stromal communication and tumor progression and demonstrated an inductive function for CAF-educated monocytes in BC cell progression. We also proposed a supporting model in which exosomal transfer of miR-181a from CAF-educated monocytes activates AKT signaling by regulating PTEN in BC cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据