4.6 Article

Improved Fuel Cell Chemical Durability of an Heteropoly Acid Functionalized Perfluorinated Terpolymer-Perfluorosulfonic Acid Composite Membrane

期刊

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/acb848

关键词

-

向作者/读者索取更多资源

Commercial proton exchange membrane heavy-duty fuel cell vehicles require a more durable composite membrane that can potentially conduct protons. We developed a composite membrane incorporating silicotungstic heteropoly acid (HPA) and other materials, which showed less swelling, more hydrophobic properties, and higher crystallinity than conventional membranes. This composite membrane demonstrated a proton conductivity of 0.130 +/- 0.03 S cm(-1) at 80 degrees C and 95% RH, and survived more than 800 hours under accelerated stress test conditions.
Commercial proton exchange membrane heavy-duty fuel cell vehicles will require a five-fold increase in durability compared to current state-of-the art light-duty fuel cell vehicles. We describe a new composite membrane that incorporates silicotungstic heteroply acid (HPA), alpha-K(8)SiW(11)O(40)13H(2)O, a radical decomposition catalyst and when acid-exchanged can potentially conduct protons. The HPA was covalently bound to a terpolymer of tetrafluoroethylene, vinylidene fluoride, and sulfonyl fluoride containing monomer (1,1,2,2,3,3,4,4-octafluoro-4-((1,2,2-trifluorovinyl)oxy)butane-1-sulfonyl fluoride) by dehydrofluorination followed by addition of diethyl (4-hydroxyphenyl) phosphonate, giving a perfluorosulfonic acid-vinylidene fluoride-heteropoly acid (PFSA-VDF-HPA). A composite membrane was fabricated using a blend of the PFSA-VDF-HPA and the 800EW 3M perfluoro sulfonic acid polymer. The bottom liner-side of the membrane tended to have a higher proportion of HPA moieties compared to the air-side as gravity caused the higher mass density PFSA-VDF-HPA to settle. The composite membrane was shown to have less swelling, more hydrophobic properties, and higher crystallinity than the pure PFSA membrane. The proton conductivity of the membrane was 0.130 +/- 0.03 S cm(-1) at 80 degrees C and 95% RH. Impressively, when the membrane with HPA-rich side was facing the anode, the membrane survived more than 800 h under accelerated stress test conditions of open-circuit voltage, 90 degrees C and 30% RH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据