4.5 Article

Comparison of Top-Down Protein Fragmentation Induced by 213 and 193 nm UVPD

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jasms.2c00288

关键词

-

向作者/读者索取更多资源

This study compared the effects of 193 nm and 213 nm photons in ultraviolet photodissociation (UVPD) on 5 different proteins and evaluated the differences between the two wavelengths. The results showed that 213 nm UVPD more efficiently generated a specific type of fragment ions, possibly due to increased light absorption at the proline amide bond with 213 nm photons.
The growing interest in advancing tandem mass spectrometry strategies for top-down proteomics has motivated efforts to optimize ion activation strategies for intact proteins, including the comparison of 193 and 213 nm wavelengths for ultraviolet photodissociation (UVPD). The present study focuses on the performance and outcomes of UVPD for five proteins, ubiquitin, cytochrome C, frataxin, myoglobin, and carbonic anhydrase, with an emphasis on evaluating the similarities and differences in fragmentation promoted by UVPD using 193 nm versus 213 nm photons. Mass spectra were collected as a function of the number of laser pulses, and precursor depletion levels were monitored and controlled to provide consistent energy deposition between 213 and 193 nm UVPD. Fragment ions were confirmed on the basis of their isotopic distributions in m/z space to preserve both charge state and abundance information and were classified on the basis of ion type and frequency. A large portion of the total fragment ion abundance was attributable to preferential cleavages, particularly ones adjacent to proline residues. These cleavages were examined on the basis of the backbone site and abundances, revealing that a and y-2 ions N-terminal to proline residues appeared at disproportionately high abundances in 213 nm UVPD spectra as compared to 193 nm UVPD spectra, highlighting one notable difference in the top-down spectra. We theorize that these fragments are formed more efficiently in 213 nm UVPD than in 193 nm UVPD due to increased absorption of 213 nm photons at the proline amide bond.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据