4.8 Article

Sensitization Pathways in NIR-Emitting Yb(III) Complexes Bearing 0,+1,+2, or+3 Charges

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 144, 期 46, 页码 21056-21067

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c05813

关键词

-

资金

  1. Swedish Research Council [Dnr: 2019.0071]
  2. Carl Tryggers Stiftelse fo?r Vetenskaplig Forskning
  3. Knut och Alice Wallenbergs Stiftelse
  4. [2017-04077]
  5. [Dnr: 2018.0066]

向作者/读者索取更多资源

Yb(III) complexes of macrocyclic ligands based on 1,4,7,10-tetraazacyclododecane were synthesized. The complexes carried a carbostyril chromophore for Yb(III) sensitization and different donors for metal binding, resulting in complexes with different charges. Carbostyril excitation resulted in Yb(III) luminescence in all complexes. The residual carbostyril fluorescence quantum yields decreased with increasing reducibility of the Yb(III) centers.
Yb(III) complexes of macrocyclic ligands based on 1,4,7,10-tetraazacyclododecane were synthesized. The ligands carried a carbostyril chromophore for Yb(III) sensitization, and carboxylate or carbamide donors for metal binding, forming complexes of 0, +1, +2, or +3 overall charge. The coordination geometry was little affected by the replacement of carboxylates with amides, as shown by paramagnetic 1H NMR spectroscopy. The Yb(III)/Yb(II) reduction potentials were dependent on the nature of the metal binding site, and the more positively charged complexes were easier to reduce. Carbostyril excitation resulted in Yb(III) luminescence in every complex. The residual carbostyril fluorescence quantum yields were smaller in complexes containing more reducible Yb(III) centers decreasing from 5.9% for uncharged complexes to 3.1-4.4% in +3 charged species, suggesting photoinduced electron transfer (PeT) from the antenna to the Yb(III). The relative Yb(III) luminescence quantum yields were identical within the experimental error, except for the +3 charged complex with fully methylated coordinating amides, which was the most intense Yb(III) emitter of the series in water. Quenching of the Yb(III) excited state by NH vibrations proved to limit Yb(III) emission. No clear improvement of the Yb(III) sensitization efficiency was shown upon faster PeT. This result can be explained by the concomitant sensitization of Yb(III) by phonon-assisted energy transfer (PAEnT) from the antenna triplet excited state, which was completely quenched in all of the Yb complexes. Depopulation of the triplet by PeT quenching of the donor singlet excited state would be compensated by the sensitizing nature of the PeT pathway, thus resulting in a constant overall sensitization efficiency across the series.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据