4.6 Article

ConViT: improving vision transformers with soft convolutional inductive biases

出版社

IOP Publishing Ltd
DOI: 10.1088/1742-5468/ac9830

关键词

deep learning; machine learning

资金

  1. French government [ANR-19-P3IA-0001]

向作者/读者索取更多资源

In this paper, a new architecture called ConViT is introduced, which combines the advantages of convolutional networks and self-attention mechanisms, achieving better performance and sample efficiency in image classification tasks. The role of locality in learning is also investigated, and various ablations are performed to better understand the success of ConViT.
Convolutional architectures have proven to be extremely successful for vision tasks. Their hard inductive biases enable sample-efficient learning, but come at the cost of a potentially lower performance ceiling. Vision transformers rely on more flexible self-attention layers, and have recently outperformed CNNs for image classification. However, they require costly pre-training on large external datasets or distillation from pre-trained convolutional networks. In this paper, we ask the following question: is it possible to combine the strengths of these two architectures while avoiding their respective limitations? To this end, we introduce gated positional self-attention (GPSA), a form of positional self-attention which can be equipped with a 'soft' convolutional inductive bias. We initialize the GPSA layers to mimic the locality of convolutional layers, then give each attention head the freedom to escape locality by adjusting a gating parameter regulating the attention paid to position versus content information. The resulting convolutional-like ViT architecture, ConViT, outperforms the DeiT (Touvron et al 2020 arXiv: 2012.12877) on ImageNet, while offering a much improved sample efficiency. We further investigate the role of locality in learning by first quantifying how it is encouraged in vanilla self-attention layers, then analyzing how it has escaped in GPSA layers. We conclude by presenting various ablations to better understand the success of the ConViT. Our code and models are released publicly at https://github.com/facebookresearch/convit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据