4.1 Article

Supramolecular and base-induced singlet oxygen generation enhancement of a water-soluble phthalocyanine

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S1088424623500128

关键词

Metal phthalocyanine; singlet oxygen; aggregation; supramolecular; hydrogel; fluorescence

向作者/读者索取更多资源

Investigating the ROS-generating abilities of photosensitizers is crucial for the study of photodynamic therapy in clinical settings. The water-soluble photosensitizer ZnPcTS can generate ROS as singlet oxygen under specific irradiation. Incorporating ZnPcTS into a hydrogel material greatly enhances its SO generation rate.
Investigation into the reactive oxygen species (ROS) generating abilities of photosensitizers outside of in-vitro/vivo conditions is a crucial element in the wider study of photodynamic therapy (PDT) in clinical settings. Zinc(II) phthalocyanine tetrasulfonic acid (ZnPcTS) is a water-soluble photosensitizer that can generate ROS as singlet oxygen (SO) under irradiation in the red and far-red region of the electromagnetic spectrum. The incorporation of ZnPcTS into nano-fibers of a bis-imidazolium hydrogel was demonstrated and the material was characterized with photophysical, rheological, and microscopy techniques. This supramolecular material containing ZnPcTS (named ZnPcTS_nEqBase@Gels) was found to significantly enhance the SO generation rate with respect to that of ZnPcTS in an aqueous solution. The effect is attributed mainly to reduced aggregation within the gel microenvironment compared with a solution. Furthermore, the preparation of ZnPcTS_nEqBase@Gels was carried out in the presence of varying amounts (0, 1, 2, 3, 4 eq.) of NaOH to improve the dissolution of ZnPcTSby ensuring full deprotonation of the sulfonate. The gel material containing 4 equivalents of NaOH per phthalocyanine was found to have a significantly greater SO-generating ability than the corresponding material containing no base. This phenomenon was shown to be partially a consequence of reduced aggregation as observed in the spectroscopic characterization. The enhancement in SO generation induced by this type of hybrid material makes it an attractive candidate to be used in different applications when efficient SO production is required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据