4.6 Article

Activation of small conductance Ca2+-activated K+ channels suppresses Ca2+ transient and action potential alternans in ventricular myocytes

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 601, 期 1, 页码 51-67

出版社

WILEY
DOI: 10.1113/JP283870

关键词

alternans; arrhythmia; excitation-contraction coupling; long QT; small conductance Ca-activated K channels; ventricular myocyte

向作者/读者索取更多资源

This study investigates the effects of SK channel activation on alternans in cardiac myocytes. The results demonstrate that SK channel activation can prevent or reduce pacing-induced alternations in CaT and APD, presenting a potential intervention for arrhythmia prevention and therapy.
At the cellular level, cardiac alternans is observed as beat-to-beat alternations in contraction strength, action potential (AP) morphology and Ca2+ transient (CaT) amplitude, and is a risk factor for cardiac arrhythmia. The (patho)physiological roles of small conductance Ca2+-activated K+ (SK) channels in ventricles are poorly understood. We tested the hypothesis that in single rabbit ventricular myocytes pharmacological modulation of SK channels plays a causative role for the development of pacing-induced CaT and AP duration (APD) alternans. SK channel blockers (apamin, UCL1684) had only a minor effect on AP repolarization. However, SK channel activation by NS309 resulted in significant APD shortening, demonstrating that functional SK channels are well expressed in ventricular myocytes. The effects of NS309 were prevented or reversed by apamin and UCL1684, indicating that NS309 acted on SK channels. SK channel activation abolished or reduced the degree of pacing-induced CaT and APD alternans. Inhibition of K(V)7.1 (with HMR1556) and K(V)11.1 (with E4031) channels was used to mimic conditions of long QT syndromes type-1 and type-2, respectively. Both HMR1556 and E4031 enhanced CaT alternans that was prevented by SK channel activation. In AP voltage-clamped cells the SK channel activator had no effect on CaT alternans, confirming that suppression of CaT alternans was caused by APD shortening. APD shortening contributed to protection from alternans by lowering sarcoplasmic reticulum Ca2+ content and curtailing Ca2+ release. The data suggest that SK activation could be a potential intervention to avert development of alternans with important ramifications for arrhythmia prevention and therapy for patients with long QT syndrome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据