4.4 Review

A next-generation liquid xenon observatory for dark matter and neutrino physics

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-6471/ac841a

关键词

dark matter; neutrinoless double-beta decay; neutrinos; supernova; direct detection; astroparticle physics; xenon

向作者/读者索取更多资源

This article discusses how to study dark matter and neutrinos using a dual-phase xenon time-projection chamber, which has extensive sensitivity to various dark matter candidates and can cover a wide range of parameter space. These detectors can also investigate neutrinos through neutrinoless double-beta decay and various astrophysical sources. A next-generation xenon-based detector will serve as a truly multi-purpose observatory to advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology.
The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据