4.7 Article

The activity comparison of six dietary flavonoids identifies that luteolin inhibits 3T3-L1 adipocyte differentiation through reducing ROS generation

期刊

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
卷 112, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2022.109208

关键词

Dietary flavonoid; Luteolin; ROS generation; Anti-adipogenic activity

向作者/读者索取更多资源

This study evaluates the effects of six common dietary flavonoids on adipocyte differentiation in 3T3-L1 cells. It is found that flavonoids with the same backbone of 5,7-dihydroxylflavone can inhibit adipocyte differentiation, with luteolin exhibiting the strongest inhibitory capability. Luteolin reduces ROS generation during adipocyte differentiation, revealing a new mechanism underlying the anti-adipogenic actions of flavonoids.
Mitochondrial reactive oxygen species (ROS)generation plays an essential role in the process of adipocyte differentiation and is involved in the develop-ment of obesity and associated metabolic diseases. Various dietary flavonoids possess the substantial anti-adipogenic activity. However, it is unclear whether these flavonoids inhibit adipocyte differentiation by reducing ROS generation. In this study, the effects of six common dietary flavonoids on adipocyte differ-entiation were assessed in 3T3-L1 cells. The flavonoids with the same backbone of 5,7-dihydroxylflavone, including flavones apigenin, chrysin, luteolin and flavonols kaempferol, myricetin, quercetin, dose-dependently inhibited 3T3-L1 adipocyte differentiation, suggesting an associated hierarchy of inhibitory ca-pability: luteolin > quercetin > myricetin > apigenin/kaempferol > chrysin. Meanwhile, six flavonoids were found to inhibit adipogenic gene expression and the early stage of adipocyte differentiation. Among the tested flavonoids, luteolin significantly reduced both intracellular and mitochondrial ROS generation during adipocyte differentiation. Further, luteolin treatment depressed the elevation of H2O2 concentration in the early stage of 3T3-L1 differentiation and reversed the facilitated effects of exogenous H2O2 on 3T3-L1 adipocyte differentiation and ROS generation. Altogether, the activity comparison of six dietary flavonoids identifies that luteolin inhibits 3T3-L1 adipocyte differentiation through reducing ROS generation, elucidating a new mechanism underlying the anti-adipogenic actions of flavonoids. (c) 2022 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据