4.5 Article

Densification of nanoporous metals during nanoindentation: The role of structural and mechanical properties

期刊

JOURNAL OF MATERIALS RESEARCH
卷 38, 期 3, 页码 853-866

出版社

SPRINGER HEIDELBERG
DOI: 10.1557/s43578-022-00870-1

关键词

Nanoporous metal; Nanoindentation; Densification; Finite element simulation; Image processing

向作者/读者索取更多资源

The analysis of the densification behavior of nanoporous metals in nanoindentation is challenging in simulations and experiments. A deeper understanding of the densification behavior provides valuable information about the different deformation mechanisms in nanoindentation and compression experiments. The developed two-scale model allows for predicting the densification field for variable microstructure and elastic-plastic behavior. It could be shown that the penetration depth of the densification field is mainly controlled by the ratio of the macroscopic work hardening rate to yield stress. The shape as well as the value at characteristic isolines of densification depend mainly on the macroscopic plastic response of the nanoporous material. This could be confirmed by nanoindentation experiments, where the densification under the indenter was measured for ligament sizes from 35 to 150 nm. Although the depth of the densification field was underpredicted by the simulations, the experiments confirmed the predicted trends.
The analysis of the densification behavior of nanoporous metals in nanoindentation is challenging in simulations and experiments. A deeper understanding of the densification behavior provides valuable information about the different deformation mechanisms in nanoindentation and compression experiments. The developed two-scale model allows for predicting the densification field for variable microstructure and elastic-plastic behavior. It could be shown that the penetration depth of the densification field is mainly controlled by the ratio of the macroscopic work hardening rate to yield stress. The shape as well as the value at characteristic isolines of densification depend mainly on the macroscopic plastic response of the nanoporous material. This could be confirmed by nanoindentation experiments, where the densification under the indenter was measured for ligament sizes from 35 to 150 nm. Although the depth of the densification field was underpredicted by the simulations, the experiments confirmed the predicted trends.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据