4.5 Article

The SLP estimation of the nanoparticle systems using size-dependent magnetic properties for the magnetic hyperthermia therapy

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmmm.2022.170219

关键词

Magnetic nanoparticles (MNPs); Specific loss power (SLP) of MNPs; Saturation magnetization of MNPs; Anisotropy constant of MNP

向作者/读者索取更多资源

Magnetic Nanoparticle hyperthermia (MNH) is a hyperthermia therapy that uses magnetic nanoparticles to achieve temperature increase in tumor tissue/targeted region. This study investigates the effects of magnetic nanoparticle properties, size, and magnetic field parameters on heat generation during MNH. Comparisons of heat generation by three nanoparticle systems and its dependency on size and magnetic field parameters are theoretically investigated.
Magnetic Nanoparticle hyperthermia (MNH) is one of the hyperthermia therapy in which temperature gain is achieved through magnetic nanoparticles in the tumor tissue/targeted region. The key parameters for efficient heating in MNH are magnetic nanoparticle (MNPs) properties, its size & materials, and magnetic field parameters (amplitude and frequency). Thus, the present study investigates the effects of these parameters on heat generation during MNH. In this study, a comparison of heat generation by three nanoparticle systems (CoFe2O4, Fe3O4, and MnFe2O4) and its dependency on size & magnetic field parameters is theoretically investigated. The quantification of specific loss power (SLP) of nanoparticle systems depending on its size-dependent saturation magnetization (M-S) and the anisotropy constant (K-eff). of nanoparticles has been done in this work. Correlations for MS and Keff based on the previously reported experimental data have been established for considered MNP systems. The comparisons show that SLP estimation using MNP size-dependent saturation magnetization (M-S) (Fig. 4) are closer to the experimentally reported values of SLP for all considered MNP systems (CoFe2O4, Fe3O4, and MnFe2O4) in comparison to SLP estimated by fixed values of saturation magnetization (M-S) and anisotropy constant (K-eff). Results show that dissipated power reaches a peak at a certain particle size (DO). However, the (DO) varies with the magnetic field frequency and amplitude. It decreases as the frequency increases at a particular field amplitude. In addition, the SLP increment ceases after a certain frequency (fO) that is around 500 kHz for considered MNP systems. On the other hand, the SLP continuously increases with an increase in field amplitude. Thus this work incorporates the empirical correlations as well as experimental data to predict the SLP for three magnetic nanoparticle systems generally utilized in the MNH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据