4.6 Article

Intense green photoluminescence and upconversion-based intrinsic optical bistability in Ho3+/Yb3+ codoped CaSc2O4 and upconversion in Ho3+/Yb3+ codoped CaY2O4 phosphors

期刊

JOURNAL OF LUMINESCENCE
卷 252, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jlumin.2022.119261

关键词

Lanthanide ion; Energy transfer; Downconversion; Upconversion; Applications

类别

资金

  1. Department of Science and Technology (DST) , Government of India, Global Innovation and Technology Alliances (GITA) [GITA/DST/TWN/P-65/2015]
  2. Ministry of Science and Technology, Taiwan [MOST108-2113-M-009-003, MOST104-2923-M-009- 004-MY3]
  3. Ministerio de Economia y Competitividad (MINECO) [PID2019-106383GB-44]
  4. Spanish Research Agency (AEI) under projects MALTA Consolider Team network [RED2018-102612- T]
  5. EU- FEDER funds

向作者/读者索取更多资源

This study investigates the downshifting, frequency upconversion, and intrinsic optical bistability in CaSc2O4: Ho3+/Yb3+ and upconversion in CaY2O4:Ho3+/Yb3+ phosphors synthesized by a complex-based precursor solution method. The results show that these phosphors possess superior optical properties for various applications.
The present study details the downshifting, frequency upconversion and intrinsic optical bistability in CaSc2O4: Ho3+/Yb3+ and upconversion in CaY2O4:Ho3+/Yb3+ phosphors synthesized by a complex-based precursor solution method. The X-ray powder diffraction confirms the formation of highly crystalline phosphors with pure orthorhombic phase. Fourier transform infrared studies of synthesized phosphors show vibrational bands due to the presence of Ca-O, Sc-O and Y-O groups. The diffuse reflectance spectra show a number of bands in the UV-vis-NIR regions due to presence of Ho3+ and Yb3+ ions. The values of optical band gap (Eg) are found to be 5.69 eV and 5.58 eV for the Ho3+/Yb3+ codoped CaSc2O4 and CaY2O4 phosphors, respectively. The Ho3+/Yb3+ codoped CaSc2O4 phosphors display intense green downshifting emission upon 454 nm excitations. The lifetime of green luminescence of CaSc2O4:Ho3+/Yb3+ phosphors with varied Yb3+ concentrations have also been measured. The decay curves show a non-exponential nature fitted to the Inokuti-Hirayama model and the energy transfer microscopic parameters have been also calculated. The Ho3+/Yb3+ co-doped CaSc2O4 and CaY2O4 phosphors display intense green alongwith weak blue, red, and near-infrared upconversion (UC) emissions upon 980 nm excitations. The spectral color purity (Sgr) of CaSc2O4:Ho3+(1%)/Yb3+(5%) phosphor is calculated to be 0.78. Importantly, the variation of pump power generates intrinsic optical bistability (IOB) in the CaSc2O4: Ho3+(1%)/Yb3+(5%) phosphor for the green emission, which is not observed in the CaY2O4:Ho3+(1%)/Yb3+(5%) phosphor. Therefore, the Ho3+/Yb3+ co-doped CaSc2O4 phosphor could potentially be used in UC-based devices, optical memory devices, optical gates, optical transistors and switching devices for optical communications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据