4.7 Article

Merging dual-polarization X-band radar network intelligence for improved microscale observation of summer rainfall in south Sweden

期刊

JOURNAL OF HYDROLOGY
卷 617, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2023.129090

关键词

Artificial intelligence (AI); FURUNO; Prediction; Quantitative precipitation estimation (QPE); Skane; Urban hydrology

向作者/读者索取更多资源

This study develops a method to merge data from two X-WRs in Dalby and Helsingborg to improve the accuracy of rainfall observations. The models calibrated at a 5-min scale significantly outperformed existing models for all zones, except Zone III which had persistent issues. The lowest-level elevation angle for both X-WRs showed the most erroneous results.
Compact dual-polarization doppler X-band weather radars (X-WRs) have recently gained attention in Scandinavia for sub-km and minute scale rainfall observations. This study develops a method for merging data from two X-WRs in Dalby and Helsingborg, southern Sweden (operated at five and one elevation angle levels, respectively) to improve the accuracy of rainfall observations. In total, 87 rainfall events from May-September 2021, observed by 38 tipping bucket gauges in the overlapping coverage of the X-WRs, were used for ground truth. The gauges were classified into four zones. An artificial neural network using doppler and dual-polarization variables (ANN) and a regression-based hybrid of RATEs (single-level rainfall products built-in to the X-WRs) based on the Marshall-Palmer equation (RMP) were calibrated for each zone. The calibrated models at 5-min scale significantly outperformed RATEs for all zones verified by Gilbert skill score (GSS), relative bias (rBIAS), mean absolute error (MAE), and Nash-Sutcliffe efficiency (NSE) not using the calibration data. Quantile-quantile plots confirmed a considerable improvement of the statistical distribution of the merged rainfall estimates for Zone I (closest to Dalby), II (mid-way between Dalby and Helsingborg), and IV (similar range as II for Dalby but farthest to Helsingborg) especially using ANN. Zone III (farthest to Dalby and closest to Helsingborg) was problematic for all RATEs, ANN, and RMP. The lowest-level elevation angle for both X-WRs showed the most erroneous RATEs. Consequently, the problems with Zone III can be solved if multiple levels of Helsingborg X-WR at higher levels are available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据