4.7 Article

Near surface roughness estimation: A parameterization derived from artificial rainfall experiments and two-dimensional hydrodynamic modelling for multiple vegetation coverages

期刊

JOURNAL OF HYDROLOGY
卷 617, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2022.128786

关键词

Depth-dependent roughness coefficients; Flow resistance; Artificial rainfall experiments; Hydraulic rainfall-runoff modelling; Surface runoff; Flash floods

向作者/读者索取更多资源

The study aims to determine robust Manning resistance coefficients (n) based on consecutive artificial rainfall experiments on natural hillslopes available in literature. Manning resistance coefficient is particularly important in 2D hydraulic heavy rainfall simulations, as there is a wide range of possible resistance values available leading to significantly different results regarding the accumulation of surface runoff.
Roughness is the key parameter for surface runoff simulations. This study aims to determine robust Manning resistance coefficients (n) on the basis of consecutive artificial rainfall experiments on natural hillslopes available in literature, obtained at 22 different sites with different degrees of vegetation cover and type. The Manning resistance coefficient is particularly important in the context of two-dimensional (2D) hydraulic heavy rainfall simulations. Since there is a wide range of possible resistance values available leading to significantly different results regarding the accumulation of surface runoff, especially for shallow water depths. The planning of flood protection structures is directly affected by these uncertainties. This work also improves the knowledge between roughness and the shape of the hydrograph allowing a better calibration of infiltration models. As flow velocity, water depth, and infiltration rate were not observed during the rainfall experiments, only the outflow of the test field and rain intensity are known. For this purpose, a framework was developed to parameterize shallow water depth (< 1 cm)-dependent roughness coefficients. To test the robustness of the framework, three different formulations of depth-dependent roughness and a constant Manning coefficient are used by comparing the measured discharge under different rainfall intensities with simulations in a 2D-hydraulic model. We identified a strong dependency of Manning's n on the degree of vegetation cover and-type as well as an influence of consecutive rainfall events. This finally leads to a more robust parameterization of near surface roughness for hydrodynamic modelling, which is particularly important for the simulation of heavy rainfall events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据