4.7 Article

Impacts of climate change on future hurricane induced rainfall and flooding in a coastal watershed: A case study on Hurricane Harvey

期刊

JOURNAL OF HYDROLOGY
卷 616, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2022.128774

关键词

Climate change; Hurricane; Extreme rainfall; Coastal watershed; Inundation modeling

向作者/读者索取更多资源

This study investigates the future impacts of warmer climate on hurricane-induced extreme rainfall and compound flooding. A modeling framework using multiple models was applied to analyze the potential changes in the Clear Creek watershed. The results show significant increases in rainfall, flood extent, and depth, highlighting the importance of considering climate change in assessing the risks of compound flooding.
The warming climate is likely to increase hurricane-associated extreme rainfall and lead to sea-level rise (SLR). Thus, how the floods induced by intense hurricanes respond to these potential changes is of great concern. This study investigates the future warmer climate impacts on hurricane-induced extreme rainfall, and-more importantly-the subsequent compound flooding at the watershed scale (from an event-based analysis perspective). To this goal, a modeling framework is designed based on the Distributed Hydrology Soil Vegetation Model (DHSVM), the Two-Dimensional fvand the Regional Community Earth System Model (R-CESM). The framework was applied to Hurricane Harvey (2017) at the Clear Creek watershed (a coastal watershed in the southern Houston) as a case study. The results show that the projected maximum rainfall totals over the watershed would be exacerbated by 17.7 % and 49.7 % in the 2050s and 2090s (respectively) under Repre-sentative Concentration Pathway 8.5 (RCP 8.5). This means a 16.1 % increase in Harvey rainfall over the watershed per degree Celsius increase in Mean Surface Temperature over the Gulf of Mexico region (18 degrees -31 degrees N, 77 degrees -98 degrees W). Meanwhile, the increases in maximum inundation extent would be 11.0 % (2050s) and 19.5 % (2090s). Furthermore, considerable increases in maximum inundation depth and duration in regions along the middle and downstream of Clear Creek (and also those around Clear Lake) are expected. The projected SLR will have little effect on the maximum inundation depth and extent if storm surge changes are not taken into account; meanwhile, it will influence the inundation duration at downstream locations. This modeling framework can be also applied at other coastal watersheds to evaluate the projected climate change impacts on the compound flooding induced by extreme climate events.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据