4.7 Article

Cadmium contributes to heat tolerance of a hyperaccumulator plant species Sedum alfredii

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 441, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.129840

关键词

Thermotolerance; Heat shock transcriptional factors; Hydrogen peroxide; Stomatal function; Sedum alfredii Hance

向作者/读者索取更多资源

This study found that Cd can improve the heat resistance of the hyperaccumulator plant Sedum alfredii. Cd penetrates the guard cells, restores stomatal function, and mitigates water loss under heat stress. Additionally, Cd activates antioxidant enzymes, promotes phytohormone biosynthesis, and upregulates a series of genes, enhancing the heat resistance of S. alfredii.
Hyperaccumulators are plant species that tolerate and accumulate very high concentrations of toxic metals, including Cd. Hyperaccumulation of heavy metals is reported to benefit plant biotic resistance; however, no prior study has examined the possible role of toxic metals on abiotic stress resistance in hyperaccumulators. A pre-liminary experiment found that Cd significantly improved plant growth of a hyperaccumulator, Sedum alfredii Hance, under heat stress. This study investigated the possible role of Cd in S. alfredii's heat resistance, using infrared thermography, transmission electron microscopy (TEM), real-time quantitative polymerase chain re-action (RT-qPCR), and high-throughput sequencing. The results showed that high temperatures irreversibly damaged stomatal function, chloroplast structure, photosynthesis in S. alfredii, and lowered survival rates to 25%. However, Cd application significantly decreased the leaf temperature of S. alfredii and increased the sur-vival rate to 75%. Cd penetrated the guard cells, restored stomatal function, and mitigated excessive water loss from S. alfredii under heat stress. Moreover, it activated antioxidant enzymes, promoted phytohormone biosynthesis, and upregulated a series of unigenes, thereby augmenting heat resistance in S. alfredii. These results indicate that Cd effectively improved thermotolerance in S. alfredii by regulating stomatal movement and antioxidant systems via upregulation of phytohormones and heat shock proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据