4.7 Article

Approximate streamsurfaces for flow visualization

期刊

JOURNAL OF FLUID MECHANICS
卷 954, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.992

关键词

vortex dynamics; turbulence theory; topological fluid dynamics

向作者/读者索取更多资源

Instantaneous features of three-dimensional velocity fields can be visualized most directly through streamsurfaces, but it is often unclear which streamsurfaces to choose given the infinite possibilities passing through each point. However, vector fields with a non-degenerate first integral can define a continuous family of streamsurfaces, while vortical regions in generic vector fields may have local first integrals over a discrete set of streamtubes. In this study, a method is introduced to construct such first integrals from velocity data and it is shown that their level sets accurately frame vortical features in known examples.
Instantaneous features of three-dimensional velocity fields are most directly visualized via streamsurfaces. It is generally unclear, however, which streamsurfaces one should pick for this purpose, given that infinitely many such surfaces pass through each point of the flow domain. Exceptions to this rule are vector fields with a non-degenerate first integral whose level surfaces globally define a continuous, one-parameter family of streamsurfaces. While generic vector fields have no first integrals, their vortical regions may admit local first integrals over a discrete set of streamtubes, as Hamiltonian systems are known to do over Cantor sets of invariant tori. Here we introduce a method to construct such first integrals approximately from velocity data, and show that their level sets indeed frame vortical features of the velocity field in examples in which those features are known from Lagrangian analysis. Moreover, we test our method in numerical datasets, including a flow inside a V-junction and a turbulent channel flow. For the latter, we propound an algorithm to pin down the most salient barriers to momentum transport up to a given scale providing a way out of the occlusion conundrum that typically accompanies other vortex visualization methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据