4.7 Article

The structure of energy fluxes in wave turbulence

期刊

JOURNAL OF FLUID MECHANICS
卷 954, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.995

关键词

internal waves; wave-turbulence interactions; capillary waves

向作者/读者索取更多资源

We calculate the net energy per unit time exchanged between two sets of modes in a generic system using a three-wave kinetic equation. Our method allows for quantifying the energy transfers in isotropic and anisotropic wave systems, providing a systematic approach to energy fluxes in wave turbulence. It is not limited to stationarity, scale invariance, and strict locality, and has potential implications in the interpretation of wave turbulence experiments.
We calculate the net energy per unit time exchanged between two sets of modes in a generic system governed by a three-wave kinetic equation. Our calculation is based on the property of detailed energy conservation of the triadic resonant interactions. In a first application to isotropic systems, we re-derive the previously used formula for the energy flux as a particular case for adjacent sets. We then exploit the new formalism to quantify the level of locality of the energy transfers in the example of surface capillary waves. A second application to anisotropic wave systems expands the currently available set of tools to investigate magnitude and direction of the energy fluxes in these systems. We illustrate the use of the formalism by characterizing the energy pathways in the oceanic internal wavefield. Our proposed approach, unlike traditional approaches, is not limited to stationarity, scale invariance and strict locality. In addition, we define a number w that quantifies the scale separation necessary for two sets of modes to having negligible mutual energy exchange, with potential consequences in the interpretation of wave turbulence experiments. The methodology presented here provides a general, simple and systematic approach to energy fluxes in wave turbulence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据