4.7 Article

Experimental study of submerged liquid metal jet in a rectangular duct in a transverse magnetic field

期刊

JOURNAL OF FLUID MECHANICS
卷 953, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.879

关键词

high-Hartmann-number flows; jets

资金

  1. Russian Science Foundation [20-69-46067]
  2. Ministry of Science and Higher Education of the Russian Federation [075-01056-22-00]
  3. Leibniz Supercomputing Centre on the SuperMUC-NG super-computing cluster [pn68ni]

向作者/读者索取更多资源

This study experimentally investigates the dynamics of a liquid metal flow in the form of a submerged round jet entering a square duct in the presence of a transverse magnetic field. The results show that the instability of the jet leads to high-amplitude fluctuations, and the flow structure and fluctuation properties are determined by the value of the Stuart number.
A liquid metal flow in the form of a submerged round jet entering a square duct in the presence of a transverse magnetic field is studied experimentally. A range of high Reynolds and Hartmann numbers is considered. Flow velocity is measured using electric potential difference probes. A detailed study of the flow in the duct's cross-section about seven jet's diameters downstream of the inlet reveals the dynamics, which is unsteady and dominated by high-amplitude fluctuations resulting from the instability of the jet. The flow structure and fluctuation properties are largely determined by the value of the Stuart number N. At moderate N, the mean velocity profile retains a central jet with three-dimensional perturbations increasingly suppressed by the magnetic field as N grows. At higher values of N, the flow becomes quasi-two-dimensional and acquires the form of an asymmetric macrovortex, with high-amplitude velocity fluctuations reemerging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据