4.7 Article

High velocity impact on a thin (non-Newtonian) fluid layer

期刊

JOURNAL OF FLUID MECHANICS
卷 951, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.884

关键词

lubrication theory; viscoelasticity

资金

  1. NWO (The Netherlands Organization for Scientific Research) [731.017.201]
  2. Unilever
  3. Anton Paar

向作者/读者索取更多资源

In this study, the squeeze flow of thin fluid layers during high velocity impact on a solid surface was experimentally investigated. It was found that the amount of viscous dissipation determines the remaining fluid in the contact after the object's kinetic energy is absorbed. Newtonian and shear thinning fluids can be completely drained from the contact on a short time scale, while viscoelastic liquids cannot be drained due to their elastic tendency to retract back into the contact after rapid squeezing. Furthermore, the experimental results were consistent with the predictions of hydrodynamic theory applied to the fluid flow in the gap.
During the high velocity impact of an object on a solid covered with a thin fluid layer, a lubricated contact exists within the short time in which the liquid is squeezed out from the contact. This is important for e.g. the grip of shoes on wet surfaces. We experimentally study the squeeze flow of such layers and find that the amount of viscous dissipation determines how much fluid remains in the contact after the kinetic energy of the impacting object is absorbed. For impacts with sufficient amount of kinetic energy, it is possible to completely drain a Newtonian or shear thinning fluid from the contact on a short time scale. Viscoelastic liquids, however, cannot be drained by increasing impact velocity, because of the fluids' elastic tendency to retract back into the contact after rapid squeezing. This explains why the presence of polymeric fluids can lead to extreme slipperiness of surfaces. Furthermore, we show that all our experimental results agree with the predictions given by hydrodynamic theory applied to the fluid flow in the gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据