4.7 Article

Slurry phase biodegradation of heavy oily sludge and evidence of asphaltene biotransformation

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 324, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2022.116315

关键词

Oily sludge; Biodegradation; Triton X-100; Asphaltene; GCxGC-TOF MS; Biotransformation

资金

  1. Industrial Research and Consultancy Centre (IRCC) , IIT Bombay
  2. [12IRAWD007]

向作者/读者索取更多资源

This study optimized the slurry phase biodegradation of oily sludge from an Indian refinery by a bacterial consortium in the presence of Triton X-100. GCxGC analysis showed an increase in lower n-alkanes and removal of higher n-alkanes after biodegradation. Changes in the pyrolysis products of asphaltenes were observed, indicating the biotic transformation of asphaltene fraction.
Oily sludge management is a global environmental concern due to its hazardous nature. Oily sludge obtained from a refinery in India had 19-21% oil content. The oil was highly enriched in the asphaltene fraction. Slurry phase biodegradation of this oily sludge in presence of a 3-membered bacterial consortium was optimized in presence of Triton X-100 to increase the bioavailability of hydrocarbons. Triton X-100 at 4 times the critical micelle concentration (CMC) showed the highest degradation where oil removal of 53.1% was achieved from a 10% sludge slurry over 90 days. GCxGC analysis of n-alkanes present in the oily sludge after the biodegradation study showed an increase in the lower n-alkanes, i.e., dodecane and tridecane over the first 30 days, whereas the higher n-alkanes were removed to a much higher extent. Heptadecane showed the maximum extent of degradation with 94.9% removal in 90 days and an initial degradation rate of 0.079 day(-1). The, maximum rate of degradation was observed for pentacosane (0.083 day(-1)) with 93.7% removal in 90 days. The increase in the lower n-alkanes may be attributed to biotic transformation of the asphaltene fraction which was also confirmed through FTIR and pyrolysis GCxGC analysis. Biodegradation was found to cause changes in the pyrolysis product of asphaltenes where four and three-ring pyrolysis products decreased while the one and two-ring pyrolysis products increased. In presence of the consortium asphaltene removal over 90 days was 12% whereas only 0.4% removal was obtained in the abiotic controls.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据