4.4 Article

The Role of Particle Size Distribution for Fluid Loss Materials on Formation of Filter-Cakes and Avoiding Formation Damage

出版社

ASME
DOI: 10.1115/1.4056187

关键词

formation damage; return permeability; solids invasion; geothermal energy; petroleum; engineering

向作者/读者索取更多资源

Numerous studies have shown that careful particle size selection is crucial for reducing fluid loss when drilling permeable or fractured formations. Conventional particle size methods are adequate for designing a fluid for wellbore stabilization purposes, but for optimization of reservoir drilling fluids, a different particle size selection method is more effective in preventing formation damage.
Numerous studies have shown that careful particle size selection is the main parameter for reducing fluid loss when drilling permeable or fractured formations. The methods are generally built around either the D50 or D90 values of the particles in the fluid as a relative size to the pore openings of the formation to minimize fluid loss. A series of studies were conducted with the aim of assessing if analysis of fluid loss could be used to separate the formation of internal and external filter-cakes, thereby enabling a more accurate estimate of the permeabilities of the internal and external filter-cakes. It was concluded that conventional particle size methods were found to be adequate for designing a fluid for wellbore stabilization purposes. This led to higher solids invasion and a more impermeable internal filter-cake. However, for optimization of reservoir drilling fluids, a different particle size selection method was found to be more useful to prevent reservoir formation damage. This method involves selecting particles that are resistant towards shear-degradation and with a D90 particle size ?3/2 the pore size of the formation. By analyzing fluid loss regression data and correlating these with indicators of formation damage, such as disc mass and permeability change, it was found that a ratio defined as the relative plugging factor could provide insight into the extent of solids invasion into the formation and potential formation damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据