4.8 Article

Engineered NanoAlum from aluminum turns cold tumor hot for potentiating cancer metalloimmunotherapy

期刊

JOURNAL OF CONTROLLED RELEASE
卷 354, 期 -, 页码 770-783

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2023.01.043

关键词

Aluminum adjuvants; Tumor microenvironment; Layered double hydroxide; Metalloimmunotherapy; In situ immunotherapy

向作者/读者索取更多资源

Researchers developed a nano-aluminum adjuvant, NanoAlum, which successfully inhibited the growth of solid tumors in mice. NanoAlum, injected around the tumor, neutralized the acidic tumor microenvironment and activated tumor-resident T cells. It also inhibited the autophagy pathway in tumor cells, leading to cell apoptosis.
The poor cancer immunotherapy outcome has been closely related to immunosuppressive tumor microenvironment (TME), which usually inactivates the antitumor immune cells and leads to immune tolerance. Metalloimmunotherapy by supplementing nutritional metal ions into TME has emerged as a potential strategy to activate the tumor-resident immune cells. Herein, we engineered a magnesium-contained nano-aluminum adjuvant (NanoAlum) through hydrolyzing a mixture of Mg(OH)2 and Al(OH)3, which has highly similar components to commercial Imject Alum. Peritumoral injection of NanoAlum effectively neutralized the acidic TME while releasing Mg2+ to activate the tumor-resident T cells. Meanwhile, NanoAlum also blocked the autophagy pathway in tumor cells and subsequently induced cell apoptosis. The in vivo studies showed that merely peritumoral injection of NanoAlum successfully inhibited the growth of solid tumors in mice. On this basis, NanoAlum combined with chemical drug methotrexate or immunomodulatory adjuvant CpG further induced potent antigen-specific antitumor immunity. Overall, our study first provides a rational design for engineering tumortargeted nanomodulator from clinical adjuvants to achieve effective cancer metalloimmunotherapy against solid tumors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据